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Abstract - In this paper, the presentation will be on existing 

model called integro-differential equation of tumor growth that 

accounts for cell cycle arrest and cell death induced by periodic 

chemotherapy. Necessary and sufficient conditions for the 

global stability of the cancer –free equilibrium are derived, and 

conditions under which the system evolves to periodic 

solutions are determined. 
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I. INTRODUCTION 

 

In this paper, analyze the following equation which models the 

response of a population of tumor cells to periodic treatment 

with chemotherapy: 

=N(1-N- e
-ρ(u)(t-u)

N(u)du)- α(t)N.                         (1) 

 

Define the functional f:   ℝ ℂ[-ar,0]→ ℝ as 

f(t,N(.))= (t+u)e
-uρ(t+ u)

N(u)du. 

Define ,  N t(.) ℂ[-ar,0] as 

Nt(x)= N(t+x). (u)e
-ρ(u)(t-u)

N(u)du=f(t,Nt(.)).Equation ,is 

rewritten as 

=N(1-N-f(t,Nt(.)))-α(t)N.                                                     (2) 

                         

This equation is called a non-local delay differential equation.  

 

 N(t) represents the number of  tumor cells at time t.  

 Cells are grow logistically in the absence of treatment 

and chemotherapy with period τ . 

 α(t) represents the rate of cell arrest with period τ. 

 The integral term represents the number of cells in the 

arrested state at time t. 

 The proliferating cells die at a rate ρ(t). 

 

The stability of the trivial solution N(t)=0 of equation 2, 

corresponding to a cancer free equilibrium. Using above 

techniques, prove existence of a periodic solution, when the 

cancer free equilibrium is unstable. Finally, conclude with a 

brief discussion. 

II. PRELIMINARIES 

 

A. Integro - Differential Equation 

 

In mathematics, an integro- differential equation is an equation 

that involves both integrals and derivatives of a function [5]. 

 

B. Delay Differential Equation 

 

In mathematics, delay differential equations (DDEs) are a type 

of differential equation in which the derivative of the unknown 

function at a certain time is given in terms of the values of the 

function at previous times.A general form of the time-delay 

differential equation for x(t) ℝn
 is  x(t)=f(t,x(t),xt) ,   where  

xt={x(τ):τ≤t}. 

 

a) Examples  

 Continuous delay 

x(t)=f(t, x(t), (t+τ)d (τ)) 

 Discrete delay  

 x(t)=f(t,x(t),x(t-τ1),…,x(t-τm)) for τ1,…,τm≥0. 

 Linear with discrete delay 

x(t)=A0x(t)+A1x(t-τ1)+…+Amx(t-τm),   where 

A0,…,Am ℝn n
. 

 

C.  General First Order Linear Equation 

 

The general first order, linear integro-differential equation is of 

the form, u(x)+ t,u(t))dt= g(x,u(x)), (x0)=u0       x0≥0. 

 

III. ANALYTICAL RESULTS 

 

Let ᾱ =1/τ dt. 

Numerical simulations of, 

= N(1-N-f(t, Nt(.))- (t)N. 

Now, when ᾱ 1, =0. 

To prove the global stability of the trivial solution N=0 for 

ᾱ . 

When ᾱ ,  the system evolves to a periodic solution. 

Assume, N(t)  for t  and 0<N0=N(t=0) 1, where 1 is the 

carrying capacity of equation 2,in the absence of treatment. 

From equation 2,N(t) =N0 

exp( f(s,Ns(.)) (s)}ds) 

 

A. Stability Of The Cancer Free Equilibrium 

 

Lemma 1-Let ᾱ≤1. Then N=0 is a globally stable fixed point 

of =N(1-N-f(t,Nt(.)))-α(t)N.  

Proof: For any ζ [0,τ],and for any integer n≥1. 

= -α(t))t- f(t,Nt(.))+N)dt 
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⇒N(ζ+τ)=N(ζ)e
τ(1-ᾱ)

e
-

t(.))+N)dt. 

⇒N(ζ+nτ)=N(ζ)En(ᾱ)A(ζ)Bn(ζ) 

 

Where, En(ᾱ)=e
nτ(1-ᾱ) 

,A(ζ)=e
-

t(.))+N) dt and Bn(ζ)=e
-

t
(.)

)+N)dt. 

Claim: (ζ+nτ). 

 

Case (1):     ᾱ  

Now, ᾱ ,⇒ n(ᾱ)=0. 

Additionally, α(t),N(t)≥0. 

⇒A(ζ), Bn(ζ)≤1. 

Therefore from above equation, 

we have,   =0. 

 

Case (2):     ᾱ =1. 

When  ᾱ=1,  n(ᾱ)=1. 

Let  f(t,Nt(.))+N)dt=k, where k>0. 

Now, suppose that k<∞. Then, ζ+nτ)=η(ζ), where 

0<η(s)=k(N(ζ)A(ζ) is continuous on [0,τ]. 

 

As A(ζ) and Bn(ζ) are exponentials with negative exponents, 

the sequences {N(ζ+nτ)},ζ [0,τ] decrease monotonically , and 

deduce that N(t)≥ηmin t.This contradicts original assumption 

that k is finite: if N(t) is bounded from zero then, 

 

f(t,Nt(.))+N)dt must diverge. 

Hence, for each ζ [0,τ] then, (ζ+nτ)=0. 

By introducing 0, since (nτ)=0, >0 

Such that N(nτ)< e
-τ
, . 

Define, = τ. Consider any t≥ . 

Then   n≥   such that t = nτ+ζ,  

where ζ  [0,τ). 

By first part of this lemma, 

1- (t))dt<τ  for ζ [0,τ] 

 

We have, 

N(t)=N(nτ)exp{ 1-α(t))dt- f(t,Nt(.)+N(t)dt} t . 

Thus (t)=0. 

 

Lemma 2-If N=0 is a globally attracting fixed point of =N(1-

N-f(t,Nt(.)))-α(t)N, then ᾱ≥1. 

Proof:Suppose ᾱ>1 and choose >0 such that ᾱ<1- <1. 

Let αm=max t ɛ[0,τ] α(t) 

 

Then , f(t,Nt(.))≤ αm (u)du. 

Since  given >0, >0, such that N(t) 

< t≥ . 

Choose  = αmar). 

Then, dt =1-N-f(t,Nt(.))-α(t) 

≥(1- - -α(t)), t≥ +ar 

⇒  ≥exp{ τ(1- -ᾱ)}   >1,by suitable choice of . 

Therefore, the sequence {N( +nτ)}n is strictly increasing, 

which contradicts the assumption that, 

(t)=0. 

 

Theorem 1: 

N=0 is a global attractor for equation 2,iff  ᾱ ≥ 1. 

Proof: 

The proof follows from lemmas 1& 2. 

 

Theorem 2:
 

For 0<α<1,0<ρ and 0≤ar, N p is a locally stable steady state 

of =N(1-N-f(t,Nt(.)))-α(t)N , if α<4ρe
2ρa

r. 

Proof: 

 

The following system of delay differential equations, on 

making the substitution; 

M(t) = f(t,Nt(.)) α : 

=N(1-α-N-αM) 

 =N-γN(t-ar)-ρM. 

 

The steady states of above equations are (0,0) and (Nρ,Nρ(1-

γ)/ρ). 

The non- zero steady state, obtain the following characteristic 

equation; 
2
+(Np+ρ)λ+(ρ+α)Np-αγNpe

-λa
r=0. 

When ar, the roots of above equation are  

λ=-ρ and λ=-(1-α). 

So, Np is stable. 

To show that this is not possible when 4ρe
2ρa

r >α. 

 

If possible, let λ=y ℝbe a root of above equation. Then y 

satisfies, 

-y
2 
+(ρ+α)Np – αγ cos(y ) =0 

( Np+ )y+αγ  sin )=0 

From above equation, it follows that, y
4
+By

2
+C=0, where 

B=N
2
p-2αNp+ρ

2 
and 

C= (1-γ)
2
α

2
+2αρ+ρ

2
. 

In particular,4ρe
2ρa

r>α. 

⇒B
2
- 4C<0 

That is, y ℝ, a contradiction. 

 

IV. APPLICATION 

 

Phase Specific Models For Cancer Chemotherapy As Optimal 

Control Problems: 

Recent models for cancer chemotherapy are cell-cycle specific 

and treat the cell cycle as the object of control [3],[6]. Each cell 

passes through a sequence of phases from birth to cell division. 

Since most drugs are active in a specific phase of the cell- 

cycle. 

 The starting point is a growth phases G1 after which the 

cell enters a phase ‘s’ where DNA synthesis occurs. 

 The second growth phase G2 take place in which the cell 

prepares for phase M. 

 

The drug is proportional to the number of ineffective cell 

divisions in G2/M phase with a factor s,0<s≤1.Therefore, while 

all cells a2N2 leave the compartment G2/M  only a fraction (1-
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su)a2N2 of cells reenters phase G1/s and undergoes cell 

division.Thus the controlled mathematical model becomes 

 

 Ṅ1 = -a1N1 + 2(1-su)a2N2,N1(0)=N10 

Ṅ2 = a1N1 - a2N2,N2(0)=N20 

 

With all initial conditions positive. For s≤  the total number of 

cancer cells cannot be reduced and thus we will generally also 

assume that s> . 

 

If the set N=(N1,N2) then the general form of the system 

 Ṅ(t) = (A+suB)N(t), N(0) = N0 

Where A and B are fixed (2×2) matrices given by 

A = ,  B = . 

 

Clearly only states N(t) for which each coordinate is positive. 

If each coordinate of N(t0) is positive, then all coordinates of 

N(t) remain positive for all times t≥t0. 

Therefore, s≤  the total number of cancer cells cannot be 

reduced but if s> , the cancer cell can be reduced. 

 

V. CONCLUSION 

 

An integro - differential equation that models the response of a 

tumor growing in periodic exposure to a chemotherapy which 

causes cells first to become growth arrested and then induces 

cell death within a fixed time period.The global stability of the 

cancer free equilibrium and the existence of a periodic solution 

in the case when the cancer free equilibrium was unstable is 

studied.The periodic solution found in existence of periodic 

solutions is globally attracting. In terms of using phase specific 

models for cancer chemotherapy as optimal control problems 

and determining a minimum amount of drug required to 

eliminate the cancer. 
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